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Motivation

Fault attacks

I Active side-channel attack.

I Very powerful cryptanalytic technique.

I Faults have to be very precise and the
exact fault location has to be known
(usually) to an attacker.

I Differential fault analysis has to be
done from scratch for every cipher.

Pictures by riscure.

Q: How can algebraic cryptanalysis help?

Algebraic Fault Attacks TRUDEVICE Workshop 1 / 17



Motivation

Fault attacks

I Active side-channel attack.

I Very powerful cryptanalytic technique.

I Faults have to be very precise and the
exact fault location has to be known
(usually) to an attacker.

I Differential fault analysis has to be
done from scratch for every cipher.

Pictures by riscure.

Q: How can algebraic cryptanalysis help?

Algebraic Fault Attacks TRUDEVICE Workshop 1 / 17



Algebraic Fault Attacks

The setting

I Attacker has access to a black box, implementing the to-be-analysed
(block) cipher (with a fixed, unknown key k).

I Attacker can query the black box with a plaintext p and obtain the
corresponding ciphertext c. He can re-query to encrypt the same p.

I Attacker is able to inject faults during a query to generate faulty
ciphertexts c ′.
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Algebraic Fault Attacks

Attack phases

1. Online: Generate correct and faulty ciphertexts pairs (ci , c
′
i ) using

plaintexts pi , with 1 ≤ i ≤ n.

2. Offline: Analyse (pi , ci , c
′
i ) obtained in the online phase using algebraic

cryptanalysis, in order to reconstruct the secret key k.

In this talk

I Focus on offline phase.

I Assumption: (pi , ci , c
′
i ) already given.
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Algebraic Attacks on Block Ciphers

General approach

1. Let E be an encryption function with
I input bits x0, . . . , xn−1,
I output bits y0, . . . , yn−1,
I key bits k0, . . . , km−1

and let (p0 ‖ · · · ‖ pn−1, c0 ‖ · · · ‖ cn−1) be a plaintext-ciphertext pair.

2. Model E using (Boolean) polynomials fi with 0 ≤ i ≤ n − 1:

y0 = f0(k0, . . . , km−1, x0, . . . , xn−1)

. . .

yn−1 = fn−1(k0, . . . , km−1, x0, . . . , xn−1)

3. Substitute pi for xi and ci for yi .

4. Solve for kj .
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Algebraic Attacks

Advantages

I Very generic.

I Easy to set up.

I Require (theoretically) only one plaintext-ciphertext pair.

I Can be combined easily with other cryptanalytic techniques.

I Offer a trade-off: Researcher time vs. CPU time.

Disadvantages

I Often too generic.

I Difficult to include problem specific information.

I In general slower than specialised cryptanalytic methods.
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Solvers

How to solve (Boolean) polynomial systems

I Brute-Force (libFES, ...)

I Gröbner Bases (PolyBoRi, ...)

I SAT Solver (MiniSat, Cryptominisat, ...)

I . . .
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The LED Block Cipher

Overview

I Substitution Permutation Network (SPN)

I 64-bit state

I 64- or 128-bit keys (”no” key schedule)

I 32 or 48 encryption rounds

I Layout similar to AES: AddRoundKey, AddConstants, SubCells,
ShiftRow, MixColumnsSerial
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Modelling LED Algebraically

I AddRoundKey: The key addition can be written as

yi = xi + ki

with xi input bits, yi output bits and ki key bits, for i ∈ {0, . . . , 63}.
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Modelling LED Algebraically

I AddConstants: Addition of the matrix
0 u 0 0

1 v 0 0

2 u 0 0

3 v 0 0


with u = b5 ‖ b4 ‖ b3 and v = b2 ‖ b1 ‖ b0 can be represented by the
equations

yi = xi + 1 for i ∈ {20, 35, 51, 52}
yi = xi + b5 for i ∈ {6, 38}
yi = xi + b4 for i ∈ {7, 39}
yi = xi + b3 for i ∈ {8, 40}
yi = xi + b2 for i ∈ {22, 54}
yi = xi + b1 for i ∈ {23, 55}
yi = xi + b0 for i ∈ {24, 56}
yi = xi otherwise
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Modelling LED Algebraically

I SubCells and ShiftRows: The application of the SBox
x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S[x] C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

and the ShiftRows permutation

σ = (17 29 25 21)(18 30 26 22)(19 31 27 23)(20 32 28 24)

(33 41)(34 42)(35 43)(36 44)(37 45)(38 46)(39 47)(40 48)

(49 53 57 61)(50 54 58 62)(51 55 59 63)(52 56 60 64)

can be combined into one set of equations

yσ(i1) = xi1 xi2 xi4 + xi1 xi3 xi4 + xi2 xi3 xi4 + xi2 xi3 + xi1 + xi3 + xi4 + 1

yσ(i2) = xi1 xi2 xi4 + xi1 xi3 xi4 + xi1 xi3 + xi1 xi4 + xi3 xi4 + xi1 + xi2 + 1

yσ(i3) = xi1 xi2 xi4 + xi1 xi3 xi4 + xi2 xi3 xi4 + xi1 xi2 + xi1 xi3 + xi1 + xi3

yσ(i4) = xi2 xi3 + xi1 + xi2 + xi4

with i1 = 4i − 3, i2 = 4i − 2, i3 = 4i − 1 and i4 = 4i for i = 1, . . . , 16.
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Modelling LED Algebraically

I MixColumnsSerial: The multiplication of the state with the matrix

M =


4 1 2 2

8 6 5 6

B E A 9

2 2 F B


can be transformed to 64 equations, with an excerpt shown below:

y1 = x3 + x17 + x34 + x50

y2 = x1 + x4 + x18 + x35 + x51

y3 = x1 + x2 + x19 + x33 + x36 + x49 + x52

y4 = x2 + x20 + x33 + x49

. . .

y17 = x1 + x4 + x18 + x19 + x33 + x35 + x50 + x51

y18 = x1 + x2 + x17 + x19 + x20 + x33 + x34 + x36 + x49 + x51 + x52

y19 = x2 + x3 + x18 + x20 + x33 + x34 + x35 + x50 + x52

y20 = x3 + x17 + x18 + x34 + x36 + x49 + x50

. . .

Complete algebraic model of LED has 6208 equations in 6336 indeterminates.
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Algebraic (Fault) Attacks on Block Ciphers

General approach: Algebraic Attacks

1. Let E be an encryption function with
I input bits x0, . . . , xn−1,
I output bits y0, . . . , yn−1,
I key bits k0, . . . , km−1

and let (p0 ‖ · · · ‖ pn−1, c0 ‖ · · · ‖ cn−1) be a plaintext-ciphertext pair.

2. Model E using (Boolean) polynomials fi with 0 ≤ i ≤ n − 1:

y0 = f0(k0, . . . , km−1, x0, . . . , xn−1)

. . .

yn−1 = fn−1(k0, . . . , km−1, x0, . . . , xn−1)

3. Substitute pi for xi and ci for yi .

4. Solve for kj .
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Modelling Faults Algebraically

p c

c′

c′′

c′′′

ĉ

. . .
faults

Encryption map E with r rounds

r − 2

r − 2

r − 3

r − i

Consider a fault injection in round r − 2:

I It can be modelled as
x ′i = xi + e′i

with xi correct intermediate state, e′i faulty variables and x ′i faulty state.

I Model y ′i = f ′i (kj , x
′
i ) where f ′i are the polynomials of the last 2 rounds

using new variables (only key variables kj are the same).

I Substitute c ′i for y ′i and append all new (fault) equations to the system of
equations of the encryption map E .
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Algebraic Fault Attack on LED64

Results
Injecting a single fault in round 30 is sufficient to break LED64.

MiniSat 2.2 
 (1 thread)

Cryptominisat 2.9.4 
 (1 thread)

Cryptominisat 2.9.4 
 (4 threads)
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Note: The direct approach (using DFA) is much faster (but less generic). The
reconstruction of the key only takes a couple of minutes.
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Small Scale AES

Overview

I Framework to construct smaller (i.e. less complex) variants of AES.

I Suitable for step-by-step (algebraic) cryptanalysis.

I Integrated into Sage: http://sagemath.org/

I Notation: AES(n,r,c,e) with n #rounds, r #rows, c #columns and e
word size.

2 Small Variants of the AES

We define two sets of small scale variants of the AES; these diÆer in the form of
the final round. These two sets of variants will be denoted by SR(n, r, c, e) and
SR§(n, r, c, e).

2.1 Small Scale AES Parameters

Both SR(n, r, c, e) and SR§(n, r, c, e) are parameterised in the following way:

– n is the number of (encryption) rounds;
– r is the number of “rows” in the rectangular arrangement of the input;
– c is the number of “columns” in the rectangular arrangement of the input;
– e is the size (in bits) of a word.

SR(n, r, c, e) and SR§(n, r, c, e) both have n rounds and a block size of rce
bits, where a data block is viewed as an array of (r £ c) “words” of e bits. We
will see that the full AES is equivalent to SR§(10, 4, 4, 8).

Number of Rounds n. The AES is an iterated block cipher consisting of 10
rounds. The typical round uses four diÆerent operations. The small scale variants
SR(n, r, c, e) and SR§(n, r, c, e) consist of n rounds, with 1 ∑ n ∑ 10, using small
scale variants of these operations. These operations are specified in Section 2.2.

Data Block Array Size (r £ c). Each element of the data array is a word of
size e bits. The array itself has r rows and c columns. We consider small scale
variants of the AES with both r and c restricted to 1, 2, or 4. Some examples
are given below. Note that we adopt the AES-style of numbering “words” within
an array and work by column first.

0
0
1

0 2
1 3

0 4
1 5
2 6
3 7

0 2 4 6
1 3 5 7

0 4 8 12
1 5 9 13
2 6 10 14
3 7 11 15

Word Size e. We define small scale variants of the AES for word sizes e = 4
and e = 8. It is natural within the context of the AES to regard a word of size
e as an element of the field GF (2e). Thus we define small scale variants of the
AES with respect to the two fields GF (24) and GF (28).

The small scale variants SR(n, r, c, 4) and SR§(n, r, c, 4) use the field GF (24).
We use the primitive polynomial X4 +X +1 over GF (2) to define this field. We
let Ω be a root of this polynomial, so

GF (24) =
GF (2)[X]

(X4 + X + 1)
= GF (2)(Ω).

Various state sizes (r · c) of Small Scale AES.
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Algebraic (Fault) Attack on Small Scale AES
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Conclusion

1. Presented an algebraic framework to execute fault analysis.

2. Inherits properties of algebraic attacks:
I Generic.
I Easy to adapt for attacking new cipher designs.
I Offers trade-off: Researcher time vs. CPU time.
I Less performant than specialised attacks.

3. Showed applications to LED and Small Scale AES.
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Fin

Thank you for your attention!

Questions?

Philipp Jovanovic
jovanovic@fim.uni-passau.de


