Improved Masking for Tweakable Blockciphers with Applications to Authenticated Encryption

Philipp Jovanovic

SPEED-B

October 20, 2016

Improved Masking for Tweakable Blockciphers with Applications to Authenticated Encryption

Robert Granger¹, Philipp Jovanovic², Bart Mennink³, and Samuel Neves⁴

¹ Laboratory for Cryptologic Algorithms, École polytechnique fédérale de Lausanne, Switzerland, robert.granger@epf1.ch
² Decentralized and Distributed Systems Lab, École polytechnique fédérale de Lausanne, Switzerland, philipp.jovanovic@epf1.ch
³ Dept. Electrical Engineering, ESAT/COSIC, KU Leuven, and iMinds, Belgium, bart.mennink@esat.kuleuven.be
⁴ CISUC, Dept. of Informatics Engineering, University of Coimbra, Portugal, sneves@dei.uc.pt

(published at Eurocrypt'16)

https://eprint.iacr.org/2015/999

Tweakable Blockciphers & Authenticated Encryption

Masked Even-Mansour

Applications to Authenticated Encryption

Implementation & Evaluation

Conclusion

Tweakable Blockciphers & Authenticated Encryption

Tweakable Blockciphers (TBC)

Tweakable Blockciphers (TBC)

- Tweak T:
 - Public parameter
 - Adds flexibility to the cipher

Tweakable Blockciphers (TBC)

- Tweak T:
 - Public parameter
 - Adds flexibility to the cipher
- Different tweak \Rightarrow different permutation

• Input: Key K, nonce N, associated data H, message M

- Input: Key K, nonce N, associated data H, message M
- Output: Ciphertext C, authentication tag T

- Input: Key K, nonce N, associated data H, message M
- Output: Ciphertext C, authentication tag T
- Protects:
 - Confidentiality and integrity/authenticity of M
 - Integrity/authenticity of N and H

- Input: Key K, nonce N, associated data H, message M
- Output: Ciphertext C, authentication tag T
- Protects:
 - Confidentiality and integrity/authenticity of M
 - Integrity/authenticity of N and H

Nonce N randomizes the scheme (similar to a tweak)

2001: Mercy [Cro01] (disk encryption)

2001: Mercy [Cro01] (disk encryption)

2002: Formalization of Tweakable Blockciphers [LRW02]

2001: Mercy [Cro01] (disk encryption)

2002: Formalization of Tweakable Blockciphers [LRW02]

2004: XE / XEX [Rog04] (OCB)

- 1998: Hasty Pudding Cipher [Sch98] (AES submission, "first tweakable cipher", tweak: spice)
- 2001: Mercy [Cro01] (disk encryption)
- 2002: Formalization of Tweakable Blockciphers [LRW02]
- 2004: XE / XEX [Rog04] (OCB)
- 2007: Threefish [FLS+07] (in SHA-3 submission Skein)

- 2001: Mercy [Cro01] (disk encryption)
- 2002: Formalization of Tweakable Blockciphers [LRW02]
- 2004: XE / XEX [Rog04] (OCB)
- 2007: Threefish [FLS+07] (in SHA-3 submission Skein)
- 2014: TWEAKEY [JNP14] (in CAESAR submissions Deoxys, Joltik, and KIASU)

- 2001: Mercy [Cro01] (disk encryption)
- 2002: Formalization of Tweakable Blockciphers [LRW02]
- 2004: XE / XEX [Rog04] (OCB)
- 2007: Threefish [FLS+07] (in SHA-3 submission Skein)
- 2014: TWEAKEY [JNP14] (in CAESAR submissions Deoxys, Joltik, and KIASU)

- 2001: Mercy [Cro01] (disk encryption)
- 2002: Formalization of Tweakable Blockciphers [LRW02]
- 2004: XE / XEX [Rog04] (OCB)
- 2007: Threefish [FLS+07] (in SHA-3 submission Skein)
- 2014: TWEAKEY [JNP14] (in CAESAR submissions Deoxys, Joltik, and KIASU)

What is the simplest way to build a tweakable blockcipher?

Blockcipher-Based

Blockcipher-Based

Permutation-Based

Blockcipher-Based

typically 128 bits

Permutation-Based

typically 256 - 1600 bits

TBC and **AEAD**

- OCBx: generalized OCB [RBBK01] [Rog04] [KR11]
- Based on tweakable blockcipher \widetilde{E}

TBC and AEAD

- OCBx: generalized OCB [RBBK01] [Rog04] [KR11]
- Based on tweakable blockcipher \tilde{E}
- Tweak (*N*, *t*):
 - Unique for every evaluation
 - Different tweaks for different blocks

TBC and AEAD

- OCBx: generalized OCB [RBBK01] [Rog04] [KR11]
- Based on tweakable blockcipher \tilde{E}
- Tweak (*N*, *t*):
 - Unique for every evaluation
 - Different tweaks for different blocks
 - Change should be efficient

Powering-Up Masking

• Tweak (simplified): $(\alpha, \beta, \gamma, N)$

Powering-Up Masking

- Tweak (simplified): $(\alpha, \beta, \gamma, N)$
- Used in OCB2 and various CAESAR candidates

Powering-Up Masking

• Update of mask: shift and conditional XOR

$$2^{1}L = \begin{cases} L \ll 1 & \text{if msb}(L) = 0\\ (L \ll 1) \oplus 0^{120} 10^{4} 1^{3} & \text{else} \end{cases}$$

• Update of mask: shift and conditional XOR

$$2^{1}L = \begin{cases} L \ll 1 & \text{if } msb(L) = 0\\ (L \ll 1) \oplus 0^{120} 10^{4} 1^{3} & \text{else} \end{cases}$$

- Variable time computation
- Expensive on certain platforms

Word-based Powering-Up Masking

- By Chakraborty and Sarkar [CS06]
- Tweak: (*i*, *N*)
Word-based Powering-Up Masking

- By Chakraborty and Sarkar [CS06]
- Tweak: (*i*, *N*)
- Tower of fields:
 - $z^i \in \mathbb{F}_{2^w}[z]/g$ for $z \in \{0,1\}^w$...
 - ... instead of $x^i \in \mathbb{F}_2[x]/f$

Word-based Powering-Up Masking

- By Chakraborty and Sarkar [CS06]
- Tweak: (*i*, *N*)
- Tower of fields:
 - $z^i \in \mathbb{F}_{2^w}[z]/g$ for $z \in \{0,1\}^w$...
 - ... instead of $x^i \in \mathbb{F}_2[x]/f$
- More software-friendly
- Similar drawbacks as regular variant

Gray Code Masking

$$G(i) = G(i-1) \oplus 2^{\operatorname{ntz}(i)} \cdot E_K(N)$$

$$M \longrightarrow P \longrightarrow C$$

- $\bullet~$ Used in OCB1 and OCB3
- Tweak: (*i*, *N*)
- Update:

Gray Code Masking

$$G(i) = G(i-1) \oplus 2^{\operatorname{ntz}(i)} \cdot E_{K}(N)$$

$$M \longrightarrow P \longrightarrow C$$

- $\bullet~$ Used in OCB1 and OCB3
- Tweak: (*i*, *N*)
- Update:
 - Single XOR
 - log₂ *i* field doublings (precomputation possible)

Gray Code Masking

$$G(i) = G(i-1) \oplus 2^{\operatorname{ntz}(i)} \cdot E_{K}(N)$$

$$M \longrightarrow P \longrightarrow C$$

- Used in OCB1 and OCB3
- Tweak: (*i*, *N*)
- Update:
 - Single XOR
 - log₂ *i* field doublings (precomputation possible)
- More efficient than powering-up [KR11]

Masked Even-Mansour

High-Level Contributions

Masked Even-Mansour

- Improved masking for tweakable blockciphers
- Very efficient

High-Level Contributions

Masked Even-Mansour

- Improved masking for tweakable blockciphers
- Very efficient
- Simple to implement
- Constant time (by default)
- Relies on breakthroughs in discrete log computation

High-Level Contributions

Masked Even-Mansour

- Improved masking for tweakable blockciphers
- Very efficient
- Simple to implement
- Constant time (by default)
- Relies on breakthroughs in discrete log computation

Application to Authenticated Encryption

- Nonce-respecting AE in 0.55 cpb
- Misuse-resistant AE in 1.06 cpb

Masked Even-Mansour (MEM)

- LFSRs: φ_i
- Tweak (simplified): $(\alpha, \beta, \gamma, N)$

Masked Even-Mansour (MEM)

- LFSRs: φ_i
- Tweak (simplified): $(\alpha, \beta, \gamma, N)$
- Combines advantages of:
 - Powering-up masking
 - Word-based LFSRs

Powering-up / Gray Code Masking

- 1. Start from mathematical structure
- 2. Try to find an efficient map

Powering-up / Gray Code Masking

- 1. Start from mathematical structure
- 2. Try to find an efficient map

Problems

- Galois field operations
- Conditional shifts and XORs
- Hard to implement in constant time
- Expensive on certain platforms

MEM Masking

- 1. Start from efficient linear map φ on b-bit state
- 2. Prove that φ is an isomorphism on \mathbb{F}_{2^b}

MEM Masking

- 1. Start from efficient linear map φ on b-bit state
- 2. Prove that φ is an isomorphism on \mathbb{F}_{2^b}

Advantages

- Simple operations (XORs, shifts, etc.)
- Very efficient (SIMD-friendly)
- Minimal space usage
- Constant-time by design

Masking Function Search

1. Start with linear mapping φ on \underline{n} words of \underline{w} -bits each

$$\varphi:(x_0,\ldots,x_{n-1})\mapsto(x_1,\ldots,x_{n-1},f(x_0,\ldots,x_{n-1}))$$

and feedback function f

Masking Function Search

1. Start with linear mapping φ on \mathbf{n} words of \mathbf{w} -bits each

$$\varphi:(x_0,\ldots,x_{n-1})\mapsto(x_1,\ldots,x_{n-1},f(x_0,\ldots,x_{n-1}))$$

and feedback function f

2. Model φ as matrix

$$M = \begin{pmatrix} 0 & I & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & I \\ X_0 & X_1 & \cdots & X_{n-1} \end{pmatrix} \in \mathbb{F}_{2^{nw}} \times \mathbb{F}_{2^{nw}}$$

with $X_i \in \{0, I, SHL_c, SHR_c, ROT_c, AND_c\}$, dim $(X_i) = w$

Masking Function Search

1. Start with linear mapping φ on *n* words of *w*-bits each

$$\varphi:(x_0,\ldots,x_{n-1})\mapsto(x_1,\ldots,x_{n-1},f(x_0,\ldots,x_{n-1}))$$

and feedback function f

2. Model φ as matrix

$$M = \begin{pmatrix} 0 & I & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & I \\ \chi_0 & \chi_1 & \cdots & \chi_{n-1} \end{pmatrix} \in \mathbb{F}_{2^{nw}} \times \mathbb{F}_{2^{nw}}$$

with $X_i \in \{0, I, SHL_c, SHR_c, ROT_c, AND_c\}$, dim $(X_i) = w$

3. Check: Is minimal polynomial of *M* primitive of degree b = nw?

- Yes:
$$\varphi^{i}(L) = M^{i} \cdot L$$
 has maximum period $2^{b} - 1$; keep φ

- No: Discard φ ; move on to the next candidate

Suitable for	Ь	W	п	arphi
	128	8	16	$(x_1, \ldots, x_{15}, (x_0 \ll 2) \oplus ((x_4 \parallel x_3) \gg 3)$
	128	32	4	$(x_1, \ldots, x_3, (x_0 \ll 5) \oplus x_1 \oplus (x_1 \ll 13))$
	128	64	2	$(x_1, (x_0 \ll 4) \oplus ((x_1 \parallel x_0) \gg 25)$
	256	64	4	$(x_1, \ldots, x_3, \ (x_0 \ll 3) \oplus (x_3 \gg 5))$
	512	32	16	$(x_1,\ldots,x_{15},(x_0 \ll 5) \oplus (x_3 \gg 7))$
	512	64	8	$(x_1, \ldots, x_7, \ (x_0 \ll 29) \oplus (x_1 \ll 9))$
	800	32	25	$(x_1, \ldots, x_{24}, (x_0 \ll 25) \oplus x_{21} \oplus (x_{21} \gg 13))$
	1024	64	16	$(x_1, \ldots, x_{15}, (x_0 \ll 53) \oplus (x_5 \ll 13))$
	1600	32	50	$(x_1, \ldots, x_{49}, (x_0 \ll 3) \oplus (x_{23} \gg 3))$
	1600	64	25	$(x_1, \ldots, x_{24}, (x_0 \ll 14) \oplus ((x_1 \parallel x_0) \gg 13)$
	÷	:	÷	÷

Suitable for	Ь	w	п	φ
AES	128	8	16	$(x_1, \ldots, x_{15}, (x_0 \ll 2) \oplus ((x_4 \parallel x_3) \gg 3)$
	128	32	4	$(x_1, \ldots, x_3, (x_0 \ll 5) \oplus x_1 \oplus (x_1 \ll 13))$
	128	64	2	$(x_1, (x_0 \ll 4) \oplus ((x_1 \parallel x_0) \gg 25)$
	256	64	4	$(x_1, \ldots, x_3, (x_0 \ll 3) \oplus (x_3 \gg 5))$
	512	32	16	$(x_1, \ldots, x_{15}, (x_0 \ll 5) \oplus (x_3 \gg 7))$
	512	64	8	$(x_1, \ldots, x_7, \ (x_0 \ll 29) \oplus (x_1 \ll 9))$
	800	32	25	$(x_1, \ldots, x_{24}, (x_0 \ll 25) \oplus x_{21} \oplus (x_{21} \gg 13))$
	1024	64	16	$(x_1, \ldots, x_{15}, (x_0 \ll 53) \oplus (x_5 \ll 13))$
	1600	32	50	$(x_1, \ldots, x_{49}, (x_0 \ll 3) \oplus (x_{23} \gg 3))$
	1600	64	25	$(x_1, \ldots, x_{24}, (x_0 \ll 14) \oplus ((x_1 \parallel x_0) \gg 13)$
	÷	÷		÷

Suitable for	b	W	п	arphi
AES	128	8	16	$(x_1, \ldots, x_{15}, (x_0 \ll 2) \oplus ((x_4 \parallel x_3) \gg 3)$
	128	32	4	$(x_1, \ldots, x_3, (x_0 \ll 5) \oplus x_1 \oplus (x_1 \ll 13))$
	128	64	2	$(x_1, (x_0 \ll 4) \oplus ((x_1 \parallel x_0) \gg 25)$
	256	64	4	$(x_1, \ldots, x_3, \ (x_0 \ll 3) \oplus (x_3 \gg 5))$
ChaCha	512	32	16	$(x_1, \ldots, x_{15}, (x_0 \ll 5) \oplus (x_3 \gg 7))$
	512	64	8	$(x_1, \ldots, x_7, \ (x_0 \ll 29) \oplus (x_1 \ll 9))$
	800	32	25	$(x_1, \ldots, x_{24}, (x_0 \ll 25) \oplus x_{21} \oplus (x_{21} \gg 13))$
	1024	64	16	$(x_1, \ldots, x_{15}, (x_0 \ll 53) \oplus (x_5 \ll 13))$
	1600	32	50	$(x_1, \ldots, x_{49}, (x_0 \ll 3) \oplus (x_{23} \gg 3))$
	1600	64	25	$(x_1, \ldots, x_{24}, (x_0 \ll 14) \oplus ((x_1 \parallel x_0) \gg 13)$
	:	:	÷	÷

Suitable for	Ь	W	п	arphi
AES	128	8	16	$(x_1, \ldots, x_{15}, (x_0 \ll 2) \oplus ((x_4 \parallel x_3) \gg 3)$
	128	32	4	$(x_1, \ldots, x_3, (x_0 \ll 5) \oplus x_1 \oplus (x_1 \ll 13))$
	128	64	2	$(x_1, (x_0 \ll 4) \oplus ((x_1 \parallel x_0) \gg 25)$
	256	64	4	$(x_1,\ldots,x_3, (x_0 \ll 3) \oplus (x_3 \gg 5))$
ChaCha	512	32	16	$(x_1, \ldots, x_{15}, (x_0 \ll 5) \oplus (x_3 \gg 7))$
	512	64	8	$(x_1, \ldots, x_7, \ (x_0 \ll 29) \oplus (x_1 \ll 9))$
Keccak-f[800]	800	32	25	$(x_1, \ldots, x_{24}, (x_0 \ll 25) \oplus x_{21} \oplus (x_{21} \gg 13))$
	1024	64	16	$(x_1, \ldots, x_{15}, (x_0 \ll 53) \oplus (x_5 \ll 13))$
	1600	32	50	$(x_1, \ldots, x_{49}, (x_0 \ll 3) \oplus (x_{23} \gg 3))$
	1600	64	25	$(x_1, \ldots, x_{24}, (x_0 \ll 14) \oplus ((x_1 \parallel x_0) \gg 13)$
	÷	:	:	÷

Suitable for	Ь	W	п	arphi
AES	128	8	16	$(x_1, \ldots, x_{15}, (x_0 \ll 2) \oplus ((x_4 \parallel x_3) \gg 3)$
	128	32	4	$(x_1, \ldots, x_3, (x_0 \ll 5) \oplus x_1 \oplus (x_1 \ll 13))$
	128	64	2	$(x_1, (x_0 \ll 4) \oplus ((x_1 \parallel x_0) \gg 25)$
	256	64	4	$(x_1,\ldots,x_3, (x_0 \ll 3) \oplus (x_3 \gg 5))$
ChaCha	512	32	16	$(x_1, \ldots, x_{15}, (x_0 \ll 5) \oplus (x_3 \gg 7))$
	512	64	8	$(x_1, \ldots, x_7, \ (x_0 \ll 29) \oplus (x_1 \ll 9))$
Keccak-f[800]	800	32	25	$(x_1, \ldots, x_{24}, (x_0 \ll 25) \oplus x_{21} \oplus (x_{21} \gg 13))$
BLAKE2b	1024	64	16	$(x_1, \ldots, x_{15}, (x_0 \ll 53) \oplus (x_5 \ll 13))$
	1600	32	50	$(x_1, \ldots, x_{49}, (x_0 \ll 3) \oplus (x_{23} \gg 3))$
	1600	64	25	$(x_1, \ldots, x_{24}, (x_0 \ll 14) \oplus ((x_1 \parallel x_0) \gg 13)$
	÷	:	÷	÷

Suitable for	Ь	W	п	arphi
AES	128	8	16	$(x_1, \ldots, x_{15}, (x_0 \ll 2) \oplus ((x_4 \parallel x_3) \gg 3)$
	128	32	4	$(x_1, \ldots, x_3, (x_0 \ll 5) \oplus x_1 \oplus (x_1 \ll 13))$
	128	64	2	$(x_1, (x_0 \ll 4) \oplus ((x_1 \parallel x_0) \gg 25)$
	256	64	4	$(x_1, \ldots, x_3, \ (x_0 \ll 3) \oplus (x_3 \gg 5))$
ChaCha	512	32	16	$(x_1,\ldots,x_{15},(x_0 \ll 5) \oplus (x_3 \gg 7))$
	512	64	8	$(x_1, \ldots, x_7, \ (x_0 \ll 29) \oplus (x_1 \ll 9))$
Keccak-f[800]	800	32	25	$(x_1, \ldots, x_{24}, (x_0 \ll 25) \oplus x_{21} \oplus (x_{21} \gg 13))$
BLAKE2b	1024	64	16	$(x_1, \ldots, x_{15}, (x_0 \ll 53) \oplus (x_5 \ll 13))$
	1600	32	50	$(x_1, \ldots, x_{49}, (x_0 \ll 3) \oplus (x_{23} \gg 3))$
Keccak-f[1600]	1600	64	25	$(x_1, \ldots, x_{24}, (x_0 \ll 14) \oplus ((x_1 \parallel x_0) \gg 13)$
	÷	÷	÷	:

• Not just one but three maskings!

- Not just one but three maskings!
- From one to three:

$$\begin{array}{l} - \varphi_0 = \varphi \\ - \varphi_1 = \varphi \oplus id \\ - \varphi_2 = \varphi^2 \oplus \varphi \oplus id \end{array}$$

- Not just one but three maskings!
- From one to three:

-
$$\varphi_0 = \varphi$$

-
$$\varphi_1 = \varphi \oplus id$$

-
$$\varphi_2 = \varphi^2 \oplus \varphi \oplus id$$

• For which (α, β, γ) is the above masking unique?

• Intuitively, masking goes well as long as

 $\varphi_2^{\gamma} \circ \varphi_1^{\beta} \circ \varphi_0^{\alpha} \neq \varphi_2^{\gamma'} \circ \varphi_1^{\beta'} \circ \varphi_0^{\alpha'}$

for any $(\alpha, \beta, \gamma) \neq (\alpha', \beta', \gamma')$

• Intuitively, masking goes well as long as

$$\varphi_2^{\gamma} \circ \varphi_1^{\beta} \circ \varphi_0^{\alpha} \neq \varphi_2^{\gamma'} \circ \varphi_1^{\beta'} \circ \varphi_0^{\alpha'}$$

for any $(\alpha, \beta, \gamma) \neq (\alpha', \beta', \gamma')$

• Challenge: set proper domain for (α, β, γ)

• Intuitively, masking goes well as long as

$$\varphi_2^{\gamma} \circ \varphi_1^{\beta} \circ \varphi_0^{\alpha} \neq \varphi_2^{\gamma'} \circ \varphi_1^{\beta'} \circ \varphi_0^{\alpha}$$

for any $(\alpha, \beta, \gamma) \neq (\alpha', \beta', \gamma')$

- Challenge: set proper domain for (α, β, γ)
- Requires computation of discrete logarithms

• Intuitively, masking goes well as long as

$$\varphi_2^{\gamma} \circ \varphi_1^{\beta} \circ \varphi_0^{\alpha} \neq \varphi_2^{\gamma'} \circ \varphi_1^{\beta'} \circ \varphi_0^{\alpha'}$$

for any $(\alpha, \beta, \gamma) \neq (\alpha', \beta', \gamma')$

- Challenge: set proper domain for (α, β, γ)
- Requires computation of discrete logarithms

• Intuitively, masking goes well as long as

$$\varphi_2^{\gamma} \circ \varphi_1^{\beta} \circ \varphi_0^{\alpha} \neq \varphi_2^{\gamma'} \circ \varphi_1^{\beta'} \circ \varphi_0^{\alpha}$$

for any $(\alpha, \beta, \gamma) \neq (\alpha', \beta', \gamma')$

- Challenge: set proper domain for (α, β, γ)
- Requires computation of discrete logarithms

throughs in discrete log computation

• Intuitively, masking goes well as long as

$$\varphi_2^{\gamma} \circ \varphi_1^{\beta} \circ \varphi_0^{\alpha} \neq \varphi_2^{\gamma'} \circ \varphi_1^{\beta'} \circ \varphi_0^{\alpha'}$$

for any $(\alpha, \beta, \gamma) \neq (\alpha', \beta', \gamma')$

- Challenge: set proper domain for (α, β, γ)
- Requires computation of discrete logarithms

20

Tweak Space Domain Separation

Lemma

• Let
$$\varphi: \mathbb{F}_{2^{1024}} \mapsto \mathbb{F}_{2^{1024}}$$
 , with

$$\varphi(x_0,\ldots,x_{15}) = (x_1,\ldots,x_{15},(x_0 \ll 53) \oplus (x_5 \ll 13))$$

and associated transformation matrix M

Tweak Space Domain Separation

Lemma

• Let
$$\varphi: \mathbb{F}_{2^{1024}} \mapsto \mathbb{F}_{2^{1024}}$$
, with

$$\varphi(x_0,\ldots,x_{15}) = (x_1,\ldots,x_{15},(x_0 \ll 53) \oplus (x_5 \ll 13))$$

and associated transformation matrix M

• Let

$$- \varphi_0^{\alpha}(L) = M^{\alpha} \cdot L,$$

$$- \varphi_1^p(L) = (M+I)^p \cdot L$$

$$- \varphi_2^{\gamma}(L) = (M^2 + M + I)^{\gamma} \cdot L$$
Lemma

• Let
$$\varphi: \mathbb{F}_{2^{1024}} \mapsto \mathbb{F}_{2^{1024}}$$
, with

$$\varphi(x_0,\ldots,x_{15}) = (x_1,\ldots,x_{15},(x_0 \ll 53) \oplus (x_5 \ll 13))$$

and associated transformation matrix M

• Let

$$- \varphi_0^{\alpha}(L) = M^{\alpha} \cdot L,$$

$$- \varphi_1^{\beta}(L) = (M+I)^{\beta} \cdot L,$$

$$- \varphi_2^{\gamma}(L) = (M^2 + M + I)^{\gamma} \cdot L,$$

The composition

$$\varphi_0^{\alpha} \circ \varphi_1^{\beta} \circ \varphi_2^{\gamma}$$

specifies an injective map on the tweak space

$$\mathcal{T} = \mathcal{T}_0 \times \mathcal{T}_1 \times \mathcal{T}_2 = \{0, 1, \dots, 2^{1020} - 1\} \times \{0, 1, 2, 3\} \times \{0, 1\}$$

Proof Outline

For LFSRs φ_0 , φ_1 , φ_2 and

$$\mathcal{T} = \mathcal{T}_0 imes \mathcal{T}_1 imes \mathcal{T}_2 = \{0, 1, \dots, 2^{1020} - 1\} imes \{0, 1, 2, 3\} imes \{0, 1\}$$

show that

1. LFSR
$$\varphi_0$$
 (= φ) has period $2^{1024} - 1$

Proof Outline

For LFSRs φ_0 , φ_1 , φ_2 and

$$\mathcal{T} = \mathcal{T}_0 imes \mathcal{T}_1 imes \mathcal{T}_2 = \{0, 1, \dots, 2^{1020} - 1\} imes \{0, 1, 2, 3\} imes \{0, 1\}$$

show that

1. LFSR $\varphi_0 \ (= \varphi)$ has period $2^{1024} - 1$ 2. $\varphi_2^{\gamma} \circ \varphi_1^{\beta} \circ \varphi_0^{\alpha}$ is injective on \mathcal{T}

Show

1. LFSR $\varphi_0 \ (= \varphi)$ has period $2^{1024} - 1$

Show

- 1. LFSR φ_0 (= φ) has period $2^{1024} 1$
- 2. $\varphi_2^\gamma \circ \varphi_1^\beta \circ \varphi_0^\alpha$ is injective on ${\mathcal T}$

Show

- 1. LFSR φ_0 (= φ) has period $2^{1024} 1$
- 2. $\varphi_2^\gamma \circ \varphi_1^\beta \circ \varphi_0^\alpha$ is injective on $\mathcal T$

Proof Sketch

1.1 Minimal polynomial of M:

$$p(x) = x^{1024} + x^{901} + x^{695} + x^{572} + x^{409} + x^{366} + x^{203} + x^{163} + 1$$

Show

- 1. LFSR φ_0 (= φ) has period $2^{1024} 1 \checkmark$
- 2. $\varphi_2^\gamma \circ \varphi_1^\beta \circ \varphi_0^\alpha$ is injective on $\mathcal T$

Proof Sketch

1.1 Minimal polynomial of M:

 $p(x) = x^{1024} + x^{901} + x^{695} + x^{572} + x^{409} + x^{366} + x^{203} + x^{163} + 1$

- 1.2 *p* is irreducible and primitive:
 - *M* has order $2^{1024} 1$
 - φ_0 has period $2^{1024} 1$

Show

- 1. LFSR φ_0 (= φ) has period $2^{1024} 1 \checkmark$
- 2. $\varphi_2^\gamma \circ \varphi_1^\beta \circ \varphi_0^\alpha$ is injective on $\mathcal T$

Proof Sketch

2.1 Compute $l_1 = \log_x(x+1)$ and $l_2 = \log_x(x^2+x+1)$ in $\mathbb{F}_2[x]/p(x)$, then $M^{\alpha}(M+I)^{\beta}(M^2+M+I)^{\gamma} \Leftrightarrow M^{\alpha}M^{l_1\beta}M^{l_2\gamma}$

Show

- 1. LFSR $\varphi_0 \ (= \varphi)$ has period $2^{1024} 1 \checkmark$
- 2. $\varphi_2^\gamma \circ \varphi_1^\beta \circ \varphi_0^\alpha$ is injective on $\mathcal T$

Proof Sketch

٨

- 2.1 Compute $l_1 = \log_x(x+1)$ and $l_2 = \log_x(x^2+x+1)$ in $\mathbb{F}_2[x]/p(x)$, then $M^{\alpha}(M+I)^{\beta}(M^2+M+I)^{\gamma} \Leftrightarrow M^{\alpha}M^{l_1\beta}M^{l_2\gamma}$
- 2.2 Given distinct (α, β, γ) , $(\alpha', \beta', \gamma') \in \mathcal{T}$:

$$\begin{split} \mathcal{A}^{\alpha} \mathcal{M}^{l_{1}\beta} \mathcal{M}^{l_{2}\gamma} &= \mathcal{M}^{\alpha'} \mathcal{M}^{l_{1}\beta'} \mathcal{M}^{l_{2}\gamma'} \\ \Leftrightarrow \\ \alpha - \alpha' &= (\beta - \beta')l_{1} + (\gamma - \gamma')l_{2} \bmod 2^{1024} - 1 \end{split}$$

Show

- 1. LFSR φ_0 (= φ) has period $2^{1024} 1 \checkmark$
- 2. $\varphi_2^\gamma \circ \varphi_1^\beta \circ \varphi_0^\alpha$ is injective on $\mathcal T$

Proof Sketch

- 2.1 Compute $l_1 = \log_x(x+1)$ and $l_2 = \log_x(x^2+x+1)$ in $\mathbb{F}_2[x]/p(x)$, then $M^{\alpha}(M+I)^{\beta}(M^2+M+I)^{\gamma} \Leftrightarrow M^{\alpha}M^{l_1\beta}M^{l_2\gamma}$
- 2.2 Given distinct (α, β, γ) , $(\alpha', \beta', \gamma') \in \mathcal{T}$:

$$\begin{split} M^{\alpha} M^{l_1\beta} M^{l_2\gamma} &= M^{\alpha'} M^{l_1\beta'} M^{l_2\gamma'} \\ \Leftrightarrow \\ \alpha - \alpha' &= (\beta - \beta')l_1 + (\gamma - \gamma')l_2 \bmod 2^{1024} - 1 \\ 2^{1020.58} \leq |(\beta - \beta')l_1 + (\gamma - \gamma')l_2| \end{split}$$

2.3 Then

Show

- 1. LFSR $\varphi_0 \ (= \varphi)$ has period $2^{1024} 1 \checkmark$
- 2. $\varphi_2^\gamma \circ \varphi_1^\beta \circ \varphi_0^\alpha$ is injective on $\mathcal{T}\checkmark$

Proof Sketch

- 2.1 Compute $l_1 = \log_x(x+1)$ and $l_2 = \log_x(x^2+x+1)$ in $\mathbb{F}_2[x]/p(x)$, then $M^{\alpha}(M+I)^{\beta}(M^2+M+I)^{\gamma} \Leftrightarrow M^{\alpha}M^{l_1\beta}M^{l_2\gamma}$
- 2.2 Given distinct (α, β, γ) , $(\alpha', \beta', \gamma') \in \mathcal{T}$:

$$\begin{split} \mathcal{M}^{\alpha} \mathcal{M}^{l_{1}\beta} \mathcal{M}^{l_{2}\gamma} &= \mathcal{M}^{\alpha'} \mathcal{M}^{l_{1}\beta'} \mathcal{M}^{l_{2}\gamma'} \\ \Leftrightarrow \\ \alpha - \alpha' &= (\beta - \beta')l_{1} + (\gamma - \gamma')l_{2} \bmod 2^{1024} - 1 \end{split}$$

2.3 Then $|\alpha - \alpha'| \le 2^{1020} - 1 < 2^{1020.58} \le |(\beta - \beta')l_1 + (\gamma - \gamma')l_2|$

• Lattice spanned by rows of

$$\begin{pmatrix} K \cdot 1 & w_0 & 0 & 0 \\ K \cdot l_1 & 0 & w_1 & 0 \\ K \cdot l_2 & 0 & 0 & w_2 \\ K \cdot m & 0 & 0 & 0 \end{pmatrix}$$

for integers K, $m = 2^b - 1$, weights w_i , and dlogs l_1, l_2

• Lattice spanned by rows of

$$\begin{pmatrix} K \cdot 1 & w_0 & 0 & 0 \\ K \cdot l_1 & 0 & w_1 & 0 \\ K \cdot l_2 & 0 & 0 & w_2 \\ K \cdot m & 0 & 0 & 0 \end{pmatrix}$$

for integers K, $m = 2^b - 1$, weights w_i , and dlogs l_1, l_2 . Then

• Then

 $(\Delta \alpha + \Delta \beta l_1 + \Delta \gamma l_2 + km, \Delta \alpha w_0, \Delta \beta w_1, \Delta \gamma w_2)$

is shortest vector if

$$\Delta \alpha + \Delta \beta l_1 + \Delta \gamma l_2 \equiv 0 \pmod{2^b - 1}$$

• Lattice spanned by rows of

$$\begin{pmatrix} K \cdot 1 & w_0 & 0 & 0 \\ K \cdot l_1 & 0 & w_1 & 0 \\ K \cdot l_2 & 0 & 0 & w_2 \\ K \cdot m & 0 & 0 & 0 \end{pmatrix}$$

for integers K, $m = 2^b - 1$, weights w_i , and dlogs l_1, l_2 .

• Then

 $(\Delta \alpha + \Delta \beta l_1 + \Delta \gamma l_2 + km, \Delta \alpha w_0, \Delta \beta w_1, \Delta \gamma w_2)$

is shortest vector if

$$\Delta \alpha + \Delta \beta l_1 + \Delta \gamma l_2 \equiv 0 \pmod{2^b - 1}$$

• Finally, weights

$$(w_0, w_1, w_2) = (1, 2^{1019}, 2^{1022})$$

give a similar tweak space as in Lemma on last slide

• Lattice spanned by rows of

$$\begin{pmatrix} K \cdot 1 & w_0 & 0 & 0 \\ K \cdot l_1 & 0 & w_1 & 0 \\ K \cdot l_2 & 0 & 0 & w_2 \\ K \cdot m & 0 & 0 & 0 \end{pmatrix}$$

for integers K, $m = 2^b - 1$, weights w_i , and dlogs l_1, l_2 .

• Then

 $(\Delta \alpha + \Delta \beta l_1 + \Delta \gamma l_2 + km, \Delta \alpha w_0, \Delta \beta w_1, \Delta \gamma w_2)$

is shortest vector if

$$\Delta \alpha + \Delta \beta l_1 + \Delta \gamma l_2 \equiv 0 \pmod{2^b - 1}$$

Finally, weights

$$(w_0, w_1, w_2) = (1, 2^{1019}, 2^{1022})$$

give a similar tweak space as in Lemma on last slide

Credits: Antoine Joux

Overview

• Recent improvements of Function Field Sieve (FFS) enabled dlog-breakthroughs

Overview

- Recent improvements of Function Field Sieve (FFS) enabled dlog-breakthroughs
- Current records:
 - $\mathbb{F}_{2^{9234}}$, Kummer extension, 45 core years [GKZ14]
 - $\mathbb{F}_{3^{6},509}$, Non-Kummer extension, 200 core years [AMCMORR16]

Overview

- Recent improvements of Function Field Sieve (FFS) enabled dlog-breakthroughs
- Current records:
 - $\mathbb{F}_{2^{9234}}$, Kummer extension, 45 core years [GKZ14]
 - $\mathbb{F}_{\mathbf{3^6}\cdot \mathbf{509}},$ Non-Kummer extension, 200 core years [AMCMORR16]

Our Computations

- Standard desktop computer (2.0 GHz AMD Opteron)
- MAGMA v2.19-1

Overview

- Recent improvements of Function Field Sieve (FFS) enabled dlog-breakthroughs
- Current records:
 - $\mathbb{F}_{2^{9234}}$, Kummer extension, 45 core years [GKZ14]
 - $\mathbb{F}_{\mathbf{3^6}\cdot \mathbf{509}},$ Non-Kummer extension, 200 core years [AMCMORR16]

Our Computations

- Standard desktop computer (2.0 GHz AMD Opteron)
- MAGMA v2.19-1
- Total time for $\log_x(x+1)$ and $\log_x(x^2+x+1)$ over
 - $\mathbb{F}_{2^{\textbf{512}}}$: $\approx 14\,\text{h}$
 - $\mathbb{F}_{2^{1024}}$: $\approx 57 \, h$

Overview

- Recent improvements of Function Field Sieve (FFS) enabled dlog-breakthroughs
- Current records:
 - $\mathbb{F}_{2^{9234}}$, Kummer extension, 45 core years [GKZ14]
 - $\mathbb{F}_{\mathbf{3^6}\cdot \mathbf{509}},$ Non-Kummer extension, 200 core years [AMCMORR16]

Our Computations

- Standard desktop computer (2.0 GHz AMD Opteron)
- MAGMA v2.19-1
- Total time for $\log_x(x+1)$ and $\log_x(x^2+x+1)$ over
 - $\mathbb{F}_{2^{512}}$: $\approx 14\,h$
 - $\mathbb{F}_{2^{1024}}$: $~\approx 57\,h$
- Note: Logarithms need to be computed only once!

SageMath verification script for $\mathbb{F}_{2^{512}}$:

SageMath verification script for $\mathbb{F}_{2^{1024}}$:

```
p = x^{1024} + x^{901} + x^{695} + x^{572} + x^{409} + x^{366} + x^{203} + x^{163} + 1
K. < x > = GF(2^{1024}, name = 'x', modulus = p)
11 = 3560313810702380168941895068061768846768652879916524
     2796753456565509842707655755413753100620979021885720
     1966785351480307697311709456831372018598499174441196
     1470332602216161583378362583657570756631024935927984
     2498272238699528576230685242805763938951155448126495
     512475014867387149681903876406067502645471152193
12 = 1610056439189028793452144461315558447020117376432642
     5524859486238161374654279717800300706136749607630601
     4967362673777547140089938700144112424081388711871290
     7973319251629628361398267351880948069161459793052257
     1907117948291164323355528169854354396482029507781947
     2534171313076937775797909159788879361876099888834
x^{11} == x+1
x^{12} = x^{2+x+1}
```

Applications to Authenticated Encryption

Offset Public Permutation (OPP)

 $\varphi_2 = \varphi^2 \oplus \varphi \oplus \mathit{id}$

- Security against nonce-respecting adversaries
- 1-pass
- Fully parallelizable

Misuse-Resistant OPP (MRO)

- Fully nonce-misuse resistant version of OPP
- 2-pass
- Fully parallelizable

Implementation & Evaluation

• State size b = 1024 bits

- State size b = 1024 bits
- Permutation P from BLAKE2b with 4 and 6 rounds

- State size b = 1024 bits
- Permutation P from BLAKE2b with 4 and 6 rounds
- LFSR on 16 words of 64 bits:

$$\varphi(x_0,\ldots,x_{15}) = (x_1,\ldots,x_{15},(x_0 \ll 53) \oplus (x_5 \ll 13))$$

- State size b = 1024 bits
- Permutation P from BLAKE2b with 4 and 6 rounds
- LFSR on 16 words of 64 bits:

$$\varphi(x_0,\ldots,x_{15}) = (x_1,\ldots,x_{15},(x_0 \ll 53) \oplus (x_5 \ll 13))$$

Implementations in plain C, NEON, AVX, AVX2

• LFSR on 16 words of 64 bits:

$$\varphi(x_0,\ldots,x_{15}) = (x_1,\ldots,x_{15},(x_0 \ll 53) \oplus (x_5 \ll 13))$$

<i>x</i> ₀	x_1	<i>x</i> ₂	<i>x</i> 3
<i>x</i> ₄	X_5	x ₆	<i>X</i> 7
<i>x</i> 8	<i>X</i> 9	<i>x</i> ₁₀	x_{11}
<i>x</i> ₁₂	<i>x</i> ₁₃	<i>x</i> ₁₄	<i>x</i> ₁₅

• LFSR on 16 words of 64 bits:

$$\varphi(x_0,\ldots,x_{15}) = (x_1,\ldots,x_{15},(x_0 \ll 53) \oplus (x_5 \ll 13))$$

• Begin with state $L_i = [x_0, \ldots, x_{15}]$ of 64-bit words

<i>x</i> 0	x_1	<i>x</i> ₂	<i>X</i> 3
<i>x</i> ₄	<i>X</i> 5	x ₆	<i>X</i> 7
<i>x</i> 8	<i>X</i> 9	<i>x</i> ₁₀	x_{11}
<i>x</i> ₁₂	<i>x</i> ₁₃	<i>x</i> ₁₄	<i>x</i> ₁₅
<i>x</i> ₁₆			

- $x_{16} = (x_0 \ll 53) \oplus (x_5 \ll 13)$

• LFSR on 16 words of 64 bits:

$$\varphi(x_0,\ldots,x_{15}) = (x_1,\ldots,x_{15},(x_0 \ll 53) \oplus (x_5 \ll 13))$$

<i>x</i> ₀	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3
<i>x</i> ₄	X_5	x ₆	<i>X</i> 7
<i>x</i> 8	<i>X</i> 9	<i>x</i> ₁₀	<i>x</i> ₁₁
<i>x</i> ₁₂	<i>x</i> ₁₃	<i>x</i> ₁₄	<i>x</i> ₁₅
<i>x</i> ₁₆	<i>x</i> ₁₇		

-
$$x_{16} = (x_0 \ll 53) \oplus (x_5 \ll 13)$$

- $x_{17} = (x_1 \ll 53) \oplus (x_6 \ll 13)$

• LFSR on 16 words of 64 bits:

$$\varphi(x_0,\ldots,x_{15}) = (x_1,\ldots,x_{15},(x_0 \ll 53) \oplus (x_5 \ll 13))$$

<i>x</i> ₀	x_1	<i>x</i> ₂	<i>x</i> ₃
<i>x</i> ₄	X_5	x ₆	<i>x</i> ₇
<i>x</i> ₈	<i>X</i> 9	<i>x</i> ₁₀	x_{11}
<i>x</i> ₁₂	<i>x</i> ₁₃	<i>x</i> ₁₄	<i>x</i> ₁₅
<i>x</i> ₁₆	<i>x</i> ₁₇	<i>x</i> ₁₈	

$$\begin{array}{l} - \ x_{16} = (x_0 \lll 53) \oplus (x_5 \lll 13) \\ - \ x_{17} = (x_1 \lll 53) \oplus (x_6 \lll 13) \\ - \ x_{18} = (x_2 \lll 53) \oplus (x_7 \lll 13) \end{array}$$

• LFSR on 16 words of 64 bits:

$$\varphi(x_0,\ldots,x_{15}) = (x_1,\ldots,x_{15},(x_0 \ll 53) \oplus (x_5 \ll 13))$$

<i>x</i> ₀	x_1	<i>x</i> ₂	<i>x</i> 3
<i>x</i> ₄	X_5	x ₆	<i>X</i> 7
<i>x</i> 8	X9	<i>x</i> ₁₀	x_{11}
<i>x</i> ₁₂	<i>x</i> ₁₃	<i>x</i> ₁₄	<i>x</i> ₁₅
<i>x</i> ₁₆	<i>x</i> ₁₇	<i>x</i> ₁₈	<i>x</i> ₁₉

-
$$x_{16} = (x_0 \ll 53) \oplus (x_5 \ll 13)$$

- $x_{17} = (x_1 \ll 53) \oplus (x_6 \ll 13)$
- $x_{18} = (x_2 \ll 53) \oplus (x_7 \ll 13)$
- $x_{19} = (x_3 \ll 53) \oplus (x_8 \ll 13)$

• LFSR on 16 words of 64 bits:

$$\varphi(x_0,\ldots,x_{15}) = (x_1,\ldots,x_{15},(x_0 \ll 53) \oplus (x_5 \ll 13))$$

• Begin with state $L_i = [x_0, \ldots, x_{15}]$ of 64-bit words

<i>x</i> ₀	x_1	<i>x</i> ₂	<i>x</i> ₃
<i>x</i> ₄	X_5	x ₆	<i>X</i> 7
<i>x</i> ₈	X9	<i>x</i> ₁₀	x_{11}
<i>x</i> ₁₂	<i>x</i> ₁₃	<i>x</i> ₁₄	x_{15}
<i>x</i> ₁₆	<i>x</i> ₁₇	<i>x</i> ₁₈	<i>x</i> ₁₉

-
$$x_{16} = (x_0 \ll 53) \oplus (x_5 \ll 13)$$

- $x_{17} = (x_1 \ll 53) \oplus (x_6 \ll 13)$
- $x_{18} = (x_2 \ll 53) \oplus (x_7 \ll 13)$
- $x_{19} = (x_3 \ll 53) \oplus (x_8 \ll 13)$

• Computable in parallel (e.g. AVX2)
*x*0 x_1 *x*₂ *X*3 *x*₄ *X*5 *x*6 X7 *x*8 *X*9 *x*₁₀ x_{11} *x*₁₂ *x*₁₃ *x*₁₄ *x*₁₅ *x*₁₆ X₁₇ *x*₁₈ X_{19}

 L_{i+1}

<i>x</i> ₀	x_1	<i>x</i> ₂	<i>x</i> 3		
<i>x</i> ₄	<i>x</i> 5	<i>x</i> 6	<i>x</i> ₇		
<i>x</i> 8	Xg	<i>x</i> ₁₀	<i>x</i> ₁₁		
<i>x</i> ₁₂	<i>x</i> ₁₃	<i>x</i> ₁₄	<i>x</i> ₁₅		
<i>x</i> ₁₆	<i>x</i> ₁₇	<i>x</i> ₁₈	<i>x</i> ₁₉		
L_{i+1}					

<i>x</i> ₀	x_1	<i>x</i> ₂	<i>x</i> 3
<i>x</i> ₄	<i>X</i> 5	<i>x</i> 6	<i>x</i> 7
<i>x</i> 8	<i>X</i> 9	<i>x</i> ₁₀	<i>x</i> ₁₁
<i>x</i> ₁₂	<i>x</i> ₁₃	<i>x</i> ₁₄	<i>x</i> 15
<i>x</i> ₁₆	<i>x</i> ₁₇	<i>x</i> ₁₈	<i>x</i> ₁₉

 L_{i+2}

<i>x</i> 0	<i>x</i> ₁	×2	x3	
<i>x</i> ₄	<i>x</i> 5	<i>x</i> 6	<i>x</i> ₇	
<i>x</i> 8	Xg	<i>x</i> ₁₀	<i>x</i> ₁₁	
<i>x</i> ₁₂	<i>x</i> ₁₃	<i>x</i> ₁₄	<i>x</i> ₁₅	
<i>x</i> 16	<i>x</i> ₁₇	<i>x</i> ₁₈	<i>x</i> ₁₉	

<i>x</i> ₀	x_1	<i>x</i> ₂	<i>X</i> 3
<i>x</i> ₄	<i>X</i> 5	<i>x</i> 6	<i>x</i> ₇
<i>x</i> 8	<i>X</i> 9	<i>x</i> ₁₀	<i>x</i> ₁₁
<i>x</i> ₁₂	<i>x</i> ₁₃	<i>x</i> ₁₄	<i>x</i> 15
<i>x</i> ₁₆	<i>x</i> ₁₇	<i>x</i> ₁₈	<i>X</i> 19

 L_{i+1}

 L_{i+2}

<i>x</i> ₀	x_1	<i>x</i> ₂	<i>X</i> 3	
<i>x</i> ₄	<i>x</i> 5	<i>x</i> 6	<i>x</i> 7	
<i>x</i> 8	<i>X</i> 9	<i>x</i> ₁₀	<i>x</i> ₁₁	
<i>x</i> ₁₂	<i>x</i> ₁₃	<i>x</i> ₁₄	<i>x</i> ₁₅	
<i>x</i> ₁₆	<i>x</i> ₁₇	<i>x</i> ₁₈	<i>x</i> ₁₉	
L_{i+3}				

	Li	+3				Li	+4	
<i>x</i> ₁₆	<i>x</i> ₁₇	<i>x</i> ₁₈	<i>x</i> ₁₉	<i>X</i>]	16	<i>x</i> ₁₇	<i>x</i> ₁₈	<i>x</i> ₁₉
<i>x</i> ₁₂	<i>x</i> ₁₃	<i>x</i> ₁₄	<i>x</i> ₁₅	X	12	<i>x</i> ₁₃	<i>x</i> ₁₄	<i>x</i> ₁₅
<i>x</i> 8	Xg	<i>x</i> ₁₀	<i>x</i> ₁₁	X	8	Xg	<i>x</i> ₁₀	<i>x</i> ₁₁
<i>x</i> ₄	<i>x</i> 5	<i>x</i> 6	<i>X</i> 7	X	4	<i>x</i> 5	<i>x</i> 6	<i>x</i> ₇
<i>x</i> ₀	x_1	<i>x</i> ₂	<i>x</i> 3	x	0	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3
	Li	+1				Li	+2	
<i>x</i> ₁₆	<i>x</i> ₁₇	<i>x</i> ₁₈	<i>x</i> ₁₉	<i>X</i>]	16	<i>x</i> ₁₇	<i>x</i> ₁₈	<i>X</i> 19
<i>x</i> ₁₂	<i>x</i> ₁₃	<i>x</i> ₁₄	<i>x</i> ₁₅	X_{1}	12	<i>x</i> ₁₃	<i>x</i> ₁₄	<i>x</i> 15
<i>x</i> 8	Xg	<i>x</i> ₁₀	<i>x</i> ₁₁	X	8	Xg	<i>x</i> ₁₀	<i>x</i> ₁₁
<i>x</i> ₄	<i>x</i> 5	<i>x</i> 6	X7	X	4	<i>x</i> 5	<i>x</i> 6	<i>x</i> ₇
<i>x</i> ₀	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	X	0	x_1	<i>x</i> ₂	<i>x</i> 3

<i>x</i> 0	x_1	<i>x</i> ₂	X3
<i>x</i> ₄	X_5	x ₆	X7
<i>x</i> 8	X9	<i>x</i> ₁₀	x_{11}
<i>x</i> ₁₂	<i>x</i> ₁₃	<i>x</i> ₁₄	<i>x</i> ₁₅
<i>x</i> ₁₆	<i>x</i> ₁₇	<i>x</i> ₁₈	<i>x</i> ₁₉

 $L_{i+1}[0], \ L_{i+2}[0], \ L_{i+3}[0], \ L_{i+4}[0]$

<i>x</i> ₀	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	
<i>x</i> ₄	X_5	x ₆	<i>X</i> 7	
<i>x</i> 8	X9	<i>x</i> ₁₀	<i>x</i> ₁₁	
<i>x</i> ₁₂	<i>x</i> ₁₃	<i>x</i> ₁₄	<i>x</i> ₁₅	
<i>x</i> ₁₆	<i>x</i> ₁₇	<i>x</i> ₁₈	<i>x</i> ₁₉	

 $L_{i+1}[0], \ L_{i+2}[0], \ L_{i+3}[0], \ L_{i+4}[0]$

<i>x</i> ₀	x_1	<i>x</i> ₂	<i>x</i> 3
<i>x</i> ₄	<i>x</i> 5	<i>x</i> ₆	X7
<i>x</i> 8	X9	<i>x</i> ₁₀	x_{11}
<i>x</i> ₁₂	<i>x</i> ₁₃	<i>x</i> ₁₄	<i>x</i> ₁₅
x_{16}	<i>x</i> ₁₇	<i>x</i> ₁₈	<i>x</i> ₁₉

 $L_{i+1}[1], \ L_{i+2}[1], \ L_{i+3}[1], \ L_{i+4}[1]$

<i>x</i> ₀	x_1	<i>x</i> ₂	<i>X</i> 3
<i>x</i> 4	<i>X</i> 5	x ₆	<i>X</i> 7
<i>x</i> 8	X9	<i>x</i> ₁₀	<i>x</i> ₁₁
<i>x</i> ₁₂	<i>x</i> ₁₃	<i>x</i> ₁₄	<i>x</i> ₁₅
<i>x</i> ₁₆	<i>x</i> ₁₇	<i>x</i> ₁₈	<i>x</i> ₁₉

 $L_{i+1}[0], \ L_{i+2}[0], \ L_{i+3}[0], \ L_{i+4}[0]$

<i>x</i> ₀	x_1	<i>x</i> ₂	<i>x</i> 3
<i>x</i> ₄	<i>x</i> 5	<i>x</i> 6	<i>X</i> 7
<i>x</i> 8	X9	<i>x</i> ₁₀	<i>x</i> ₁₁
<i>x</i> ₁₂	<i>x</i> ₁₃	<i>x</i> ₁₄	<i>x</i> ₁₅
<i>x</i> ₁₆	<i>x</i> ₁₇	<i>x</i> ₁₈	<i>x</i> ₁₉

 $L_{i+1}[1], \ L_{i+2}[1], \ L_{i+3}[1], \ L_{i+4}[1]$

<i>x</i> ₀	x_1	<i>x</i> ₂	<i>X</i> 3
<i>x</i> ₄	<i>x</i> 5	<i>x</i> 6	<i>X</i> 7
<i>x</i> 8	Xg	<i>x</i> ₁₀	<i>x</i> ₁₁
<i>x</i> ₁₂	<i>x</i> ₁₃	<i>x</i> ₁₄	x_{15}
<i>x</i> ₁₆	<i>x</i> ₁₇	<i>x</i> ₁₈	<i>X</i> 19

 $L_{i+1}[2],\ L_{i+2}[2],\ L_{i+3}[2],\ L_{i+4}[2]$

<i>x</i> ₀	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3		<i>x</i> ₀	x_1	<i>x</i> ₂	<i>x</i> 3
<i>x</i> ₄	<i>X</i> 5	x ₆	X7		<i>x</i> 4	<i>X</i> 5	x ₆	X7
<i>x</i> ₈	X9	<i>x</i> ₁₀	<i>x</i> ₁₁		<i>x</i> 8	X9	<i>x</i> ₁₀	<i>x</i> ₁₁
<i>x</i> ₁₂	<i>x</i> ₁₃	<i>x</i> ₁₄	<i>x</i> ₁₅		<i>x</i> ₁₂	<i>x</i> ₁₃	<i>x</i> ₁₄	<i>x</i> ₁₅
<i>x</i> ₁₆	<i>x</i> ₁₇	<i>x</i> ₁₈	<i>x</i> ₁₉		<i>x</i> ₁₆	<i>x</i> ₁₇	<i>x</i> ₁₈	X19
L _{i+1} [0],	$L_{i+2}[0],$	L _{i+3} [0],	L _{i+4} [0]		$L_{i+1}[1],$	L _{i+2} [1],	L _{i+3[<mark>1</mark>],}	L _{i+4} [1]
x ₀	x_1	<i>x</i> ₂	<i>x</i> 3		<i>x</i> ₀	x_1	<i>x</i> ₂	<i>x</i> ₃
<i>x</i> ₄	<i>x</i> 5	<i>x</i> 6	X7		<i>x</i> ₄	X_5	x ₆	<i>X</i> 7
<i>x</i> 8	X9	<i>x</i> ₁₀	<i>x</i> ₁₁		<i>x</i> 8	X9	<i>x</i> ₁₀	<i>x</i> ₁₁
<i>x</i> ₁₂	<i>x</i> ₁₃	<i>x</i> ₁₄	<i>x</i> ₁₅	• •	<i>x</i> ₁₂	<i>x</i> ₁₃	<i>x</i> ₁₄	<i>x</i> ₁₅
<i>x</i> ₁₆	<i>x</i> ₁₇	<i>x</i> ₁₈	<i>x</i> ₁₉		<i>x</i> ₁₆	<i>x</i> ₁₇	<i>x</i> ₁₈	<i>x</i> ₁₉

 $L_{i+1}[2], \ L_{i+2}[2], \ L_{i+3}[2], \ L_{i+4}[2]$

 $L_{i+1}[15], L_{i+2}[15], L_{i+3}[15], L_{i+4}[15]$

<i>x</i> ₀	x_1	<i>x</i> ₂	<i>X</i> 3	<i>x</i> ₀	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3
<i>x</i> 4	<i>X</i> 5	<i>x</i> 6	X7	<i>x</i> ₄	<i>x</i> 5	<i>x</i> 6	<i>X</i> 7
<i>x</i> 8	X9	<i>x</i> ₁₀	<i>x</i> ₁₁	<i>x</i> 8	X9	<i>x</i> ₁₀	<i>x</i> ₁₁
<i>x</i> ₁₂	<i>x</i> ₁₃	<i>x</i> ₁₄	<i>x</i> ₁₅	<i>x</i> ₁₂	<i>x</i> ₁₃	<i>x</i> ₁₄	x ₁₅
<i>x</i> ₁₆	<i>x</i> ₁₇	<i>x</i> ₁₈	<i>x</i> ₁₉	<i>x</i> ₁₆	<i>x</i> ₁₇	<i>x</i> ₁₈	<i>x</i> ₁₉
L _{i+1} [0],	$L_{i+2}[0],$	L _{i+3} [0]	, L _{i+4} [0]	$L_{i+1}[1],$	$L_{i+2}[1],$	L _{i+3} [1]], L _{i+4[1]}
<i>x</i> 0	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	<i>x</i> ₀	x_1	<i>x</i> ₂	<i>x</i> 3
x ₀ x ₄	x ₁ x ₅	x ₂ x ₆	<mark>X3</mark> X7	x ₀ x ₄	x ₁ x ₅	x ₂ x ₆	X3 X7
x ₀ X ₄ X ₈	x ₁ x ₅ x ₉	x ₂ x ₆ x ₁₀	<mark>X3</mark> X7 X11	x ₀ x ₄ x ₈	x ₁ x ₅ x ₉	x ₂ x ₆ x ₁₀	x ₃ x ₇ x ₁₁
x ₀ x ₄ x ₈ x ₁₂	x ₁ x ₅ x ₉ x ₁₃	x ₂ x ₆ x ₁₀ x ₁₄	×3 ×7 ×11 ×15	 x ₀ x ₄ x ₈ x ₁₂	X1 X5 X9 X13	X2 X6 X10 X14	x ₃ x ₇ x ₁₁ x ₁₅
x ₀ X ₄ x ₈ X ₁₂ X ₁₆	x ₁ x ₅ x ₉ x ₁₃ x ₁₇	x ₂ x ₆ x ₁₀ x ₁₄ x ₁₈	X3 X7 X11 X15 X19	 x ₀ x ₄ x ₈ x ₁₂ x ₁₆	x ₁ x ₅ x ₉ x ₁₃ x ₁₇	X2 X6 X10 X14 X18	x ₃ x ₇ x ₁₁ x ₁₅ x ₁₉

 $L_{i+1}[2], \ L_{i+2}[2], \ L_{i+3}[2], \ L_{i+4}[2]$

 L_{i+1} [15], L_{i+2} [15], L_{i+3} [15], L_{i+4} [15]

No data layout changes needed!

$$\varphi_0(x) = \varphi(x) = (x_1, \ldots, x_{15}, \underline{t_0})$$

$$t_0 = (x_0 \ll 53) \oplus (x_5 \ll 13)$$

$$\varphi_0(x) = \varphi(x) = (x_1, \ldots, x_{15}, \underline{t_0})$$

$$\varphi_1(x) = \varphi(x) \oplus id(x)$$
$$= (x_0 \oplus x_1, \dots, x_{14} \oplus x_{15}, x_{15} \oplus t_0)$$

$$t_0 = (x_0 \ll 53) \oplus (x_5 \ll 13)$$

$$\varphi_0(x) = \varphi(x) = (x_1, \ldots, x_{15}, \underline{t_0})$$

$$\varphi_1(x) = \varphi(x) \oplus id(x)$$
$$= (x_0 \oplus x_1, \dots, x_{14} \oplus x_{15}, x_{15} \oplus t_0)$$

$$\varphi_2(x) = \varphi^2(x) \oplus \varphi(x) \oplus id(x)$$

= $(x_0 \oplus x_1 \oplus x_2, \dots, x_{14} \oplus x_{15} \oplus t_0, x_{15} \oplus t_0 \oplus t_1)$

$$t_0 = (x_0 \ll 53) \oplus (x_5 \ll 13)$$

$$t_1 = (x_1 \ll 53) \oplus (x_6 \ll 13)$$

Performance of Bare Masking

• Cycles per update in most pessimistic scenario (for ours):

Masking	Sandy Bridge	Haswell	
Powering-up	13.108	10.382	
Gray code	6.303	3.666	
Ours	2.850	2.752	

Performance of Bare Masking

• Cycles per update in most pessimistic scenario (for ours):

Masking	Sandy Bridge	Haswell
Powering-up	13.108	10.382
Gray code	6.303	3.666
Ours	2.850	2.752

• Differences may amplify/diminish in a mode

Performance of Bare Masking

• Cycles per update in most pessimistic scenario (for ours):

Masking	Sandy Bridge	Haswell
Powering-up	13.108	10.382
Gray code	6.303	3.666
Ours	2.850	2.752

- Differences may amplify/diminish in a mode
- Speeds closer to each other for smaller states

Performance of OPP/MRO

• Results for long messages (\geq 4 KiB) in cycles per byte:

	nonce-respecting				
Platform	OPP ₄	OPP ₆	AES-GCM	$Deoxys^{\neq}$	OCB3
Cortex-A8	4.26	5.91	38.6	-	28.9
Sandy Bridge	1.24	1.91	2.55	1.29	0.98
Haswell	0.55	0.75	1.03	0.96	0.69
			misuse-resista	nt	
Platform	MRO ₄	MRO_6	GCM-SIV	$Deoxys^=$	
Cortex-A8	8.07	11.32	-	-	
Sandy Bridge	2.41	3.58	-	2.58	
Haswell	1.06	1.39	1.17	1.92	

Performance of OPP/MRO

• Results for long messages (\geq 4 KiB) in cycles per byte:

	nonce-respecting				
Platform	OPP4	OPP ₆	AES-GCM	$Deoxys^{\neq}$	OCB3
Cortex-A8	4.26	5.91	38.6	-	28.9
Sandy Bridge	1.24	1.91	2.55	1.29	0.98
Haswell	0.55	0.75	1.03	0.96	0.69
			misuse-resista	nt	
Platform	MRO ₄	MRO ₆	GCM-SIV	$Deoxys^=$	
Cortex-A8	8.07	11.32	-	-	
Sandy Bridge	2.41	3.58	-	2.58	
Haswell	1.06	1.39	1.17	1.92	

Performance of OPP/MRO

• Results for long messages (\geq 4 KiB) in cycles per byte:

	nonce-respecting				
Platform	OPP4	OPP ₆	AES-GCM	$Deoxys^{\neq}$	OCB3
Cortex-A8	4.26	5.91	38.6	-	28.9
Sandy Bridge	1.24	1.91	2.55	1.29	0.98
Haswell	0.55	0.75	1.03	0.96	0.69
			misuse-resista	nt	
Platform	MRO ₄	MRO_6	GCM-SIV	$Deoxys^=$	
Cortex-A8	8.07	11.32	-	-	
Sandy Bridge	2.41	3.58	-	2.58	
Haswell	1.06	1.39	1.17	1.92	

- Haswell throughput:
 - OPP₄: $\approx 6.36 \text{ GiBps}$
 - MRO₄: $\approx 3.30 \text{ GiBps}$

Masked Even-Mansour

- Tweakable blockcipher
- Simple, efficient, constant-time (by default) masking

Masked Even-Mansour

- Tweakable blockcipher
- Simple, efficient, constant-time (by default) masking
- Constructive usage of breakthroughs in discrete log computation
- MEM-based AE is able to outperform its closest competitors

Masked Even-Mansour

- Tweakable blockcipher
- Simple, efficient, constant-time (by default) masking
- Constructive usage of breakthroughs in discrete log computation
- MEM-based AE is able to outperform its closest competitors

More Info

- https://eprint.iacr.org/2015/999
- https://github.com/MEM-AEAD

Masked Even-Mansour

- Tweakable blockcipher
- Simple, efficient, constant-time (by default) masking
- Constructive usage of breakthroughs in discrete log computation
- MEM-based AE is able to outperform its closest competitors

More Info

- https://eprint.iacr.org/2015/999
- https://github.com/MEM-AEAD

// Thank You

@Daeinar