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Drawbacks of Nakamoto Consensus
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• Transaction confirmation delay 
‣ Bitcoin: Any tx takes >10 mins until being 

confirmed 

• Weak consistency 
‣ Bitcoin: You are not really certain your tx is 

committed until you wait >1 hour 

• Low throughput 
‣ Bitcoin: ~7 tx/sec 

• Proof-of-work mining 
‣ Wastes huge amount of energy
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Scaling Blockchains is More Important Than Ever …



… But Scaling Blockchains is Not Easy
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Strawman: SimpleLedger
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Trusted randomness  
beaconOverview

• Evolves in epochs e 

• Trusted randomness beacon emits random value rnde 

• Validators: 

‣ Use rnde to compute shard assignment  
(ensures shard security) 

‣ Bootstrap from the shard ledger 

‣ Process tx using consensus  
(e.g., ByzCoin)

Shard 1
(ByzCoin group)

Shard 3
(ByzCoin group)

Shard 2
(ByzCoin group)

Shard 
ledgers

Validators

rnde



Strawman: SimpleLedger
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Trusted randomness  
beaconSecurity Drawbacks

• Randomness beacon: trusted third party 

• No tx processing during validator re-assignment 

• No cross-shard tx support 

Performance Drawbacks

• ByzCoin failure mode 

• High storage and bootstrapping cost 

• Throughput vs. latency trade-off
Shard 1

(ByzCoin group)
Shard 3

(ByzCoin group)
Shard 2

(ByzCoin group)

Validators

rnde

Shard 
ledgers
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OmniLedger – Design Goals
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1. Full Decentralization 
No trusted third parties or 

single points of failure

2. Shard Robustness 
Shards process txs 

correctly and continuously

3. Secure Transactions 
Txs commit atomically or 

abort eventually

Security Goals

4. Scale-out 
Throughput increases linearly in 
the number of active validators

5. Low Storage 
Validators do not need to store 

the entire shard tx history

6. Low Latency 
Tx are confirmed quickly

Performance Goals

Assumptions: <= 25% mildly adaptive Byzantine adversary, (partially) synchronous network, UTXO model
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Shard Validator Assignment
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Temp.  
leader

Verifiable  
randomness rnde

PVSS 
group 1

PVSS 
group 2

1. Temp. leader election  
(VRF-based)

3. Shard assignment  
(using rnde)

2. Randomness generation  
(RandHound)

Validators Validators 
(sharded)

Challenge:
• Prevent (adaptive) adversary from subverting an entire shard with high probability 

Solution:  
• Periodically re-assign validators to shards using unbiasable, publicly-verifiable randomness



Robust Epoch Transitions
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Challenge:

• Full validator re-assignment & bootstrapping enforces system halt during epoch transitions 

Solution:  

• For n validators & shard number m fix swap-out batch size k < 1/3 × n/m (e.g., k = log(n/m)) 

• Compute random permutation for j-th shard seeded by H(j || rnde)  

• Re-assign lowest k validators evenly across m shards 

• Similar approach for new validators using seed H(0 || rnde) 

• Ensures BFT consensus security/liveness since > 2/3 × n/m honest validators per shard



Atomix: Cross-Shard Transactions
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Challenge:

• Cross-shard tx commit atomically or abort  
eventually 

Solution: Atomix

• Client-managed protocol 

1. Client sends cross-shard tx to input shards 

2. Collect ACK/ERR proofs from input shards 

3. (a) If all input shards accept, commit to output 
shard, otherwise (b) abort and reclaim  
input funds 

• Optimistically trust client for liveness  

• Collective signing (CoSi) ensures compact proofs

The Atomix protocol for secure cross-shard transactions

1 2 3
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(1) Initialize

tx

tx

1 2 3

Client

(2a) Lock

ACK1

ACK2

1 2 3

Client

(3a) Commit

commit  
tx

1 2 3

Client

(2b) Lock

ACK1

ERR2

1 2 3

Client

(3b) Abort

reclaim 
tx inputs

cross-shard 
transaction tx

inputs outputs
1 3
2

Shards

Shards Shards

ShardsShards



Roadmap

 18
OmniLedger

SimpleLedger

Sharding via distributed randomness

Selective validator re-assignment: Robust epoch transitions

Atomix: Client-managed atomic cross-shard txs

ByzCoinX: Robust BFT consensus

Shard ledger pruning: Reduce storage & bootstrapping cost

Trust-but-verify validation: No throughput vs latency trade-off

Security

Performance



ByzCoinX: Consensus
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Validator cothority = Consensus group

TX blockDAG

Group 
leader

Leader

co-sign

Challenge:

• Ensure shard state consistency (process tx, etc.) 

Solution: ByzCoinX

• Variant of ByzCoin 

• Group- instead of tree-based communication 
‣ Trade-off some scalability for higher fault tolerance 
‣ Performs better for practically relevant configurations 

• BlockDAG instead of blockchain 
‣ Capture dependencies between txs 
‣ Better performance due to better resource utilization

Group 
leader

L

GL GL

https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_kokoris-kogias.pdf


Shard Ledger Pruning
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Challenge:

• High storage & bootstrapping cost for validators in high-throughput systems 

Solution:  

• State block sbj,e summarizes state of shard j at the end of epoch e 

• sbj,e  stores UTXOs in an order Merkle tree 

• Validators joining shard j in epoch e bootstrap from sbj,e-1 

• Drastically reduces storage and bootstrap cost

Shard ledger 
with state blocks

sbj,e-1 sbj,e



Challenge:

• Latency vs. throughput trade-off 

Solution:  

• Two-level “trust-but-verify” validation 

• Low latency:  
‣ Optimistically validate transactions  

batched into small blocks (e.g., 500KB) 

• High throughput:  
‣ Batch optimistically validated blocks into 

bigger blocks (e.g., 16MB) and re-validate

Trust-but-Verify Transaction Validation
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Implementation & Experimental Setup
Implementation

• Go versions of OmniLedger and its 
subprotocols (ByzCoinX, Atomix, etc.) 

• Based on DEDIS code 
‣ Kyber crypto library 
‣ Onet network library 
‣ Cothority framework 

• https://github.com/dedis
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DeterLab Setup

• 48 physical machines 
‣ Intel Xeon E5-2420 v2  

(6 cores @ 2.2 GHz) 
‣ 24 GB RAM 
‣ 10 Gbps network link 

• Network restrictions 
‣ 20 Mbps bandwidth 
‣ 200 ms round-trip latency

https://github.com/dedis


Evaluation: Throughput

Results for 1800 validators  24



Evaluation: Throughput
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#shards 1 2 4 8 16

tx/sec 439 869 1674 3240 5850

Scale-out throughput for 12.5%-adversary 
and shard size 70 and 1800 validators



Evaluation: Latency
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#shards, adversary 4, 1% 25, 5% 70, 12.5% 600, 25%

regular validation 1.38 5.99 8.04 14.52

1st lvl. validation 1.38 1.38 1.38 4.48

2nd lvl. validation 1.38 55.89 41.89 62.96

Transaction confirmation latency in seconds for regular and mutli-level validation

latency increase since optimistically 
validated blocks are batched into 
larger blocks for final validation to 

get better throughput

1 MB blocks

500 KB blocks

16 MB blocks
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Conclusion
• OmniLedger – Secure scale-out distributed ledger framework 

‣ RandHound: Secure shard-validator assignment via 
publicly-verifiable unbiasable randomness 

‣ Atomix: Client-managed cross-shard tx 
‣ ByzCoinX: Robust intra-shard BFT consensus 
‣ Sharding: Visa-level throughput and beyond 
‣ Trust-but-verify validation: No latency vs.  

throughput tradeoff 
‣ For PoW, PoS, permissioned, etc. 

• Paper: ia.cr/2017/406 (to be published at IEEE S&P’18) 

• Code: https://github.com/dedis
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Shard 1
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Epoch randomness rnde  
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https://ia.cr/2017/406
https://github.com/dedis

