
OmniLedger: A Secure, Scale-Out, Decentralized Ledger

Philipp Jovanovic
Decentralized and Distributed Systems Lab (DEDIS)

Swiss Federal Institute of Technology Lausanne (EPFL)

Binary District
2018-02-15, London

Acknowledgements

 2

Eleftherios Kokoris Kogias
(EPFL, CH)

Nicolas Gailly
(EPFL, CH)

Linus Gasser
(EPFL, CH)

Ewa Syta
(Trinity College, USA)

Bryan Ford
(EPFL, CH)

Talk Outline

• Motivation

• OmniLedger

• Evaluation

• Conclusion

 3

Talk Outline

• Motivation

• OmniLedger

• Evaluation

• Conclusion

 4

Drawbacks of Nakamoto Consensus

 5

• Transaction confirmation delay
‣ Bitcoin: Any tx takes >10 mins until being

confirmed

• Weak consistency
‣ Bitcoin: You are not really certain your tx is

committed until you wait >1 hour

• Low throughput
‣ Bitcoin: ~7 tx/sec

• Proof-of-work mining
‣ Wastes huge amount of energy

 6

Scaling Blockchains is More Important Than Ever …

… But Scaling Blockchains is Not Easy

 7

Ela
sti

co

L. Luu et al., A Secure Sharding
Protocol for Open Blockchains,
CCS 2016

Distributed Ledger Landscape

 8

Decentralization

Scale-Out Security

ByzCoin

E. Kokoris Kogias et al., Enhancing
Bitcoin Security and Performance with
Strong Consistency via Collective Signing,
USENIX Security 2016

OmniLedger

RSCoin

G. Danezis and S. Meiklejohn, Centrally Banked Cryptocurrencies, NDSS 2016

Strawman: SimpleLedger

 9

Trusted randomness
beaconOverview

• Evolves in epochs e

• Trusted randomness beacon emits random value rnde

• Validators:

‣ Use rnde to compute shard assignment  
(ensures shard security)

‣ Bootstrap from the shard ledger

‣ Process tx using consensus  
(e.g., ByzCoin)

Shard 1
(ByzCoin group)

Shard 3
(ByzCoin group)

Shard 2
(ByzCoin group)

Shard
ledgers

Validators

rnde

Strawman: SimpleLedger

 10

Trusted randomness
beaconSecurity Drawbacks

• Randomness beacon: trusted third party

• No tx processing during validator re-assignment

• No cross-shard tx support

Performance Drawbacks

• ByzCoin failure mode

• High storage and bootstrapping cost

• Throughput vs. latency trade-off
Shard 1

(ByzCoin group)
Shard 3

(ByzCoin group)
Shard 2

(ByzCoin group)

Validators

rnde

Shard
ledgers

Talk Outline

• Motivation

• OmniLedger

• Evaluation

• Conclusion

 11

OmniLedger – Design Goals

 12

1. Full Decentralization
No trusted third parties or

single points of failure

2. Shard Robustness
Shards process txs

correctly and continuously

3. Secure Transactions
Txs commit atomically or

abort eventually

Security Goals

4. Scale-out
Throughput increases linearly in
the number of active validators

5. Low Storage
Validators do not need to store

the entire shard tx history

6. Low Latency
Tx are confirmed quickly

Performance Goals

Assumptions: <= 25% mildly adaptive Byzantine adversary, (partially) synchronous network, UTXO model

Roadmap

 13
OmniLedger

SimpleLedger

Sharding via distributed randomness

Selective validator re-assignment: Robust epoch transitions

Atomix: Client-managed atomic cross-shard txs

ByzCoinX: Robust BFT consensus

Shard ledger pruning: Reduce storage & bootstrapping cost

Trust-but-verify validation: No throughput vs latency trade-off

Security

Performance

Roadmap

 14
OmniLedger

SimpleLedger

Sharding via distributed randomness

Selective validator re-assignment: Robust epoch transitions

Atomix: Client-managed atomic cross-shard txs

ByzCoinX: Robust BFT consensus

Shard ledger pruning: Reduce storage & bootstrapping cost

Trust-but-verify validation: No throughput vs latency trade-off

Security

Performance

Shard Validator Assignment

 15

Temp.
leader

Verifiable
randomness rnde

PVSS 
group 1

PVSS 
group 2

1. Temp. leader election  
(VRF-based)

3. Shard assignment
(using rnde)

2. Randomness generation
(RandHound)

Validators Validators
(sharded)

Challenge:
• Prevent (adaptive) adversary from subverting an entire shard with high probability

Solution:
• Periodically re-assign validators to shards using unbiasable, publicly-verifiable randomness

Robust Epoch Transitions

 16

Challenge:

• Full validator re-assignment & bootstrapping enforces system halt during epoch transitions

Solution:

• For n validators & shard number m fix swap-out batch size k < 1/3 × n/m (e.g., k = log(n/m))

• Compute random permutation for j-th shard seeded by H(j || rnde)

• Re-assign lowest k validators evenly across m shards

• Similar approach for new validators using seed H(0 || rnde)

• Ensures BFT consensus security/liveness since > 2/3 × n/m honest validators per shard

Atomix: Cross-Shard Transactions

 17

Challenge:

• Cross-shard tx commit atomically or abort  
eventually

Solution: Atomix

• Client-managed protocol

1. Client sends cross-shard tx to input shards

2. Collect ACK/ERR proofs from input shards

3. (a) If all input shards accept, commit to output
shard, otherwise (b) abort and reclaim  
input funds

• Optimistically trust client for liveness

• Collective signing (CoSi) ensures compact proofs

The Atomix protocol for secure cross-shard transactions

1 2 3

Client

(1) Initialize

tx

tx

1 2 3

Client

(2a) Lock

ACK1

ACK2

1 2 3

Client

(3a) Commit

commit
tx

1 2 3

Client

(2b) Lock

ACK1

ERR2

1 2 3

Client

(3b) Abort

reclaim
tx inputs

cross-shard
transaction tx

inputs outputs
1 3
2

Shards

Shards Shards

ShardsShards

Roadmap

 18
OmniLedger

SimpleLedger

Sharding via distributed randomness

Selective validator re-assignment: Robust epoch transitions

Atomix: Client-managed atomic cross-shard txs

ByzCoinX: Robust BFT consensus

Shard ledger pruning: Reduce storage & bootstrapping cost

Trust-but-verify validation: No throughput vs latency trade-off

Security

Performance

ByzCoinX: Consensus

 19

Validator cothority = Consensus group

TX blockDAG

Group
leader

Leader

co-sign

Challenge:

• Ensure shard state consistency (process tx, etc.)

Solution: ByzCoinX

• Variant of ByzCoin

• Group- instead of tree-based communication
‣ Trade-off some scalability for higher fault tolerance
‣ Performs better for practically relevant configurations

• BlockDAG instead of blockchain
‣ Capture dependencies between txs
‣ Better performance due to better resource utilization

Group
leader

L

GL GL

https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_kokoris-kogias.pdf

Shard Ledger Pruning

 20

Challenge:

• High storage & bootstrapping cost for validators in high-throughput systems

Solution:

• State block sbj,e summarizes state of shard j at the end of epoch e

• sbj,e stores UTXOs in an order Merkle tree

• Validators joining shard j in epoch e bootstrap from sbj,e-1

• Drastically reduces storage and bootstrap cost

Shard ledger
with state blocks

sbj,e-1 sbj,e

Challenge:

• Latency vs. throughput trade-off

Solution:

• Two-level “trust-but-verify” validation

• Low latency:
‣ Optimistically validate transactions  

batched into small blocks (e.g., 500KB)

• High throughput:
‣ Batch optimistically validated blocks into

bigger blocks (e.g., 16MB) and re-validate

Trust-but-Verify Transaction Validation

 21

core
validatorsoptimistic

validators

clients

tx

tx

tx shard ledger
(with state block)

finalized block

optimistically
validated
blocks

sbj,e-1

Talk Outline

• Motivation

• OmniLedger

• Evaluation

• Conclusion

 22

Implementation & Experimental Setup
Implementation

• Go versions of OmniLedger and its
subprotocols (ByzCoinX, Atomix, etc.)

• Based on DEDIS code
‣ Kyber crypto library
‣ Onet network library
‣ Cothority framework

• https://github.com/dedis

 23

DeterLab Setup

• 48 physical machines
‣ Intel Xeon E5-2420 v2  

(6 cores @ 2.2 GHz)
‣ 24 GB RAM
‣ 10 Gbps network link

• Network restrictions
‣ 20 Mbps bandwidth
‣ 200 ms round-trip latency

https://github.com/dedis

Evaluation: Throughput

Results for 1800 validators 24

Evaluation: Throughput

 25

#shards 1 2 4 8 16

tx/sec 439 869 1674 3240 5850

Scale-out throughput for 12.5%-adversary
and shard size 70 and 1800 validators

Evaluation: Latency

 26

#shards, adversary 4, 1% 25, 5% 70, 12.5% 600, 25%

regular validation 1.38 5.99 8.04 14.52

1st lvl. validation 1.38 1.38 1.38 4.48

2nd lvl. validation 1.38 55.89 41.89 62.96

Transaction confirmation latency in seconds for regular and mutli-level validation

latency increase since optimistically
validated blocks are batched into
larger blocks for final validation to

get better throughput

1 MB blocks

500 KB blocks

16 MB blocks

Talk Outline

• Motivation

• OmniLedger

• Experimental Results

• Conclusion

 27

Conclusion
• OmniLedger – Secure scale-out distributed ledger framework

‣ RandHound: Secure shard-validator assignment via 
publicly-verifiable unbiasable randomness

‣ Atomix: Client-managed cross-shard tx
‣ ByzCoinX: Robust intra-shard BFT consensus
‣ Sharding: Visa-level throughput and beyond
‣ Trust-but-verify validation: No latency vs.  

throughput tradeoff
‣ For PoW, PoS, permissioned, etc.

• Paper: ia.cr/2017/406 (to be published at IEEE S&P’18)

• Code: https://github.com/dedis
 28

Shard 1
(ByzCoinX group)

Shard 3
(ByzCoinX group)

Shard 2
(ByzCoinX group)

Validators

Shard
ledgers

Client
(Atomix coordinator)

tx3,out

tx2,in

tx1,in

Epoch randomness rnde
(RandHound)

https://ia.cr/2017/406
https://github.com/dedis

